
Collaborative Filtering

Juan Elenter, Tatiana Guevara, Ignacio Hounie,
Charilaos Kanatsoulis, and Alejandro Ribeiro*

March 12, 2023

1 Collaborative Filtering

The objective of this lab is to design a recommendation system that pre-
dicts the ratings that customers would give to a certain product. Say,
the rating that a moviegoer would give to a specific movie, or the rating
that an online shopper would give to a particular offering. A possible
approach to making these predictions is to leverage the ratings that cus-
tomers have given to this or similar products in the past. This is called
collaborative filtering.

A schematic representation of collaborative filtering is shown in Figure 1.
The underlying assumption is that there is a true set of ratings that dif-
ferent customers would give to specific products. These ratings remain
unobserved and are denoted by X̄ in Figure 1. What we do have avail-
able are a subset of these ratings. They are represented by X in Figure 1
where all of the missing ratings are represented by a blank space. This
is a reasonable model of reality. Each of us has seen a small number of
movies or bought a small number of offerings. Thus, the ratings matrix
Xu contains only a few entries that correspond to rated products. Our
goal is to recover estimates Y of the unobserved ratings X̄.

As a specific example, we use the MovieLens-100k dataset. The MovieLens-
100k dataset consists of ratings given by U users to P movies (products).

*In alphabetical order.

1



Unobserved true ratings (X̄T) Observed ratings (XT) Reconstructed ratings (YT)

Figure 1. Recommendation with Collaborative Filtering.

The existing movie ratings are integer values between 1 and 5. Therefore,
the data are represented by a U× P matrix X where xup is the rating that
user u gives to movie p. If user u has not rated movie p, we adopt the
convention that xup = 0. We see that each row of this matrix corresponds
to a vector of ratings xu of a particular user.

1.1 Product Similarity Graph

To build the collaborative filtering system, we use the rating history of all
movies and all users to compute a graph of product similarities. This is
a graph in which nodes p represent different movies and weighted edges
Spq denote similarities between products p and q. The edges of the graph
are grouped in the adjacency matrix S.

To compute the entries Spq of the product similarity graph we use the raw
U × P movie rating matrix to evaluate crosscorrelations between movie
ratings of products p and q. To make matters simpler we have constructed
this graph already and are making it available as part of the dataset.

Task 1 Download the movie rating data to your computer and upload
the data ”movie data numpy.p” to this processing environment. Plot the

2

https://drive.google.com/file/d/10qoedde9D6vrnv8HO_q38khGHfcD8pk_/view?usp=share_link


0 25 50 75 100 125 150 175
Movie index (p)

0

25

50

75

100

125

150

175

M
ov

ie
in

de
x 

(q
)

Pattern of the Movie Recommendation Adjacency Matrix

Figure 2. Adjacency Matrix of the Movie Similarity Graph. Brighter dots corre-
spond to pairs of movies that different watchers tend to score with similar ratings.

adjacency matrix S as an image. �

Success in Task 2 must have produced the plot in Figure 2. In this fig-
ure each bright dot corresponds to a large entry S(p, q). This denotes
a pair of movies to which watchers tend to give similar scores. For in-
stance, say that when someone scores ”Star Wars IV” highly, they are
likely to score ”Star Wars V” highly and that the converse is also true;
poor scores in one correlate with poor scores in the other. The entry
S(”Star Wars IV”, ”Star Wars V”) is large because the crosscorrelation be-
tween the scores of these entries is high.

Fainter entries S(p, q) denote pairs of movies with less socre correlation.
Perhaps between ”Star Wars” and ”Star Trek” which have overlapping but
not identical fan bases. Dark entries S(p, q) correspond to pairs movies
with no correlation between audience scores. Say when p is the index of
”Star Wars” and q is the index of ”Little Miss Sunshine.”

3



Observed ratings (XT)

Sampled ratings of user u (xT
u )

User similarity graph (S)

Reconstructed ratings (YT)

Figure 3. Reconstruction of Movie Ratings with a Movie Similarity Matrix

1.2 Rating Signals

The vector of ratings xu of a particular user is interpreted as a signal
supported on the graph. That is, a signal in which the pth component
xup is associated with node p. In this context, the weights of the product
similarity graph become an expectation of similarity between ratings xup
and xuq. If Spq is large we expect these ratings to be similar. If Spq is small
we have no expectation of proximity or not between them.

We then have a system with the architecture shown in Figure 3. Rating
signals xu of individual users are extracted from the raw rating matrix
and are interpreted as signals supported on the graph S that we loaded
in Task 2. We want to leverage the graph S to make rating predictions yu
for this particular user.

We will, more precisely, develop and evaluate a graph filter and a graph
neural network (GNN) for making these rating predictions.

4



1.3 Rating Data Format and Rating Loss

To train the collaborative filtering system we use rating histories to create
a dataset with entries (xn, yn, pn). In these entries xn is a vector that
contains the ratings of a particular user, yn is a scalar that contains a
rating that we want to predict, and pn is the index of the movie (product)
that corresponds to the rating yn. To evaluate this collaborative filtering
system we use rating histories to create a dataset with entries having
the same format. Both of these datasets can be constructed from the
raw U × P movie rating matrix, but to make matters simpler we have
constructed them already and are making them available as part of the
dataset.

If we have a function ŷn = Φ(xn;H) that makes rating predictions out of
availbale ratings, we can evaluate the goodness of this function with the
squared loss

`
(
Φ(xn;H), yn

)
=
[(

ŷn
)

pn
− yn

]2
=
[(

Φ(xn;H)
)

pn
− yn

]2
. (1)

Notice that in this expression the function ŷn = Φ(xn;H) makes predic-
tions for all movies. However, we isolate entry pn and compare it against
the rating yn. We do this, because the rating yn of movie pn is the one we
have available in the training or test sets.

We remark the fact that the function ŷ = Φ(x;H) makes predictions for all
movies is important during operation. The idea of the recommendation
system is to identify the subset of products that the customer would rate
highly. They are the ones that we will recommend. This is why we want
a system that has a graph signal as an output even though the available
dataset has scalar outputs.

Task 2 Write a function to evaluate the training loss in (1). �

2 Graph Convolutions

Let S denote a matrix representation of a graph. Supported on the nodes
of the graph we are given a graph signal x. We also consider a set of K

5



coefficients hk from k = 0 to k = K − 1. A graph convolutional filter is a
linear map acting on x defined as a polynomial on the matrix representa-
tion of the graph with coefficients hk,

z = h ∗S x =
K−1

∑
k=0

hkSkx. (2)

Graph convolutions generalize convolutions in time to graphs. That this
is true can be seen if we represent time with a directed line graph. Con-
sidering (2) for the particular case in which S is the adjacency matrix of
this line graph, the product Skx results in a k-shift of the time signal x. For
this reason we sometimes refer to S as a shift operator. We also point out
that although we work with an adjacency matrix in this lab any matrix
representation of the graph can be used in (2).

One advantage that graph filters share with time convolutions is their
locality. To see this, define the diffusion sequence as a collection of graph
signals uk = Skx and rewrite the filter in (2) as,

z =
K−1

∑
k=0

hkSkx =
K

∑
k=0

hkuk (3)

It is ready to see that the diffusion sequence is given by the recursion
zk = Szk−1 with z0 = x. Further observing that Sij 6= 0 only when the
pair (i, j) is an edge of the graph, we see that the entries of the diffusion
sequence satisfy

uk,i = ∑
j:(i,j)∈E

Sijuk−1,j. (4)

We can therefore interpret graph filters as operators that propagate in-
formation through adjacent nodes. This is analogous to the propagation
of information in time with the application of time shifts. The locality
of graph convolutions is one of the motivations for their use in the pro-
cessing of information supported on graphs. The other reason is their
equivariance to permutations.

Because it aggregates with a weighted sum the information from neigh-
boring nodes, the operation in (4) is sometimes called an aggregation
information. Because it aggregates at node i information that is passed
from adjacent nodes j, we sometimes say that graph filters are message-
passing architectures and the GNNs that are derived from them are called
message passing GNNs.

6



2.1 Graph Convolutions with Multiple Features

To increase the representation power of graph filters we extend them to
add multiple features. In these filters the input is a matrix X and the
output is another matrix matrix Y. The filter coefficients are matrices Hk
and the filter itself is a generalization of (2) in which the matrices Hk
replace the scalars hk,

Z =
K

∑
k=0

SkXHk. (5)

In (5), the input feature matrix X has dimension N × F and the output
feature matrix Y has dimension N × G. This means that each of the F
columns of X represents a separate input feature whereas each of the G
columns of Y represents an output feature. To match dimensions, the
filter coefficient matrices Hk must be of dimension F× G.

Other than the fact that it represents an input-output relationship between
matrices instead of vectors, (5) has the same structure of (2).

In particular, we can define a diffusion sequence Uk through the recursion
Uk = SUk−1 and rewrite (5) as

Z =
K−1

∑
k=0

hkSkX =
K

∑
k=0

hkUk. (6)

This is worth remarking because we can write the diffusion sequence as
a message passing aggregation operation. Indeed, if uk,i is the ith row of
Uk we can write the diffusion sequence recursion as

uk,i = ∑
j:(i,j)∈E

Sijuk−1,j. (7)

In (7) nodes j in the neighborhood of i pass the message uk−1,j. Node
i aggregates these messages to create the updated message uk,i that it
passes on to its neighbors.

Task 3 Write a function that implements a graph filter. This function
takes as inputs the shift operator S, the filter coefficients Hk and the input
signal X. To further improve practical performance we add a bias term B
to the filter operation. That is, we refine (5) with the opearation,

Z =
K

∑
k=0

SkXHk + B. (8)

7



The bias B is also passed as a parameter to the filter function. �

Task 4 Train a graph filter to predict movie ratings. Plot the evolution of
the training loss and evaluate the loss in the test dataset. To obtain a good
loss we need to experiment with the length of the filter – the number of
filter taps K.

A graph filter is sometimes called a linear GNN. It is a GNN that does
not use nonlinear operations.

8



3 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 2 Adjacency matrix plotted as an image

Task 3 Do not report

Task 4 Do not report

Task ?? Number of filter taps used

Task ?? Plot with training loss and test loss

Task ?? Train loss and test loss at stopping time

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 10% of your lab
grade.

9


	Collaborative Filtering
	Product Similarity Graph
	Rating Signals
	Rating Data Format and Rating Loss

	Graph Convolutions
	Graph Convolutions with Multiple Features

	Report

