Lab 8B: Closed Loop Control

Ignacio Hounie, Damian Owerko, and Alejandro Ribeiro*

November 5, 2024

1 Model Predictive Control (MPC)

In Lab 8A we tried to control a dynamical system with model based opti-
mization. This strategy failed because of the mismatch between the model
and the true system.

We illustrate this issue in Figure 1. In model based optimization we find
control actions () that are optimal for the model of the true dynamical
system. This is represented by the bottom part of the diagram where we
show that the controller is optimizing with respect to model trajectories
X(t). Once we find actions that are optimal for the model, we turn around
and implement them in the true model. This is shown in the top part
of the diagram where the control input of the true dynamical system is
u(t) = a*(¢).

If we initialize the model and the true system with the same initial con-
ditions, the trajectory X(f) of the model and the trajectory x(t) of the true
system are initially close. The first few control actions 4*(t) are therefore
good control actions for the true system. Eventually, however, the trajec-
tory X(f) of the model and the trajectory x(t) of the true system deviate.
At this point actions @*(t) that are chosen because they are optimal for
the model are far from good for the true system.

“In alphabetical order.

f(x(t),u(t)) —— x(t+1)

Figure 1. Mismatch in Model Based Optimization. The mismatch between the
true dynamical system (top) and its model (bottom) accumulates over time. Even-
tually, the states X() and x(¢) of the model and the true system deviate. When
this happens, actions @* (¢) that are optimal for the model trajectory are not good
for the true trajectory of the dynamical system.

This explanation suggests a solution. What we need to do is reinitialize
the model every so often. This is called model predictive control (MPC)
and is illustrated in Figure 2.

In MPC we define a window of length W and solve the optimization
problem,
1 t+W
a'(t:t+W) = argmin _Z 14 (xR(s), x(s)),
a(s) s=t+1

with %(s+1) = AX(s) + Ba(s),
x(t) = x(t). 1)

This is the same model based optimization problem we encountered in

fx(8),u(t)) x(t+1)

Figure 2. Model Predictive Control. The bottom part of the diagram uses the
model to determine control actions u* (¢ : t + W) that are optimal for driving model
predicted trajectories X(s) [cf. (1)]. We implement the control action u(t) = a*(¢)
in the true system (top). We preclude the accumulation of errors by reinitializing
the model at each time step ¢ (left). We say that we close the control loop.

Lab 8A, except for two modifications: (i) The initial condition is X(¢) =
x(t). (ii) The merit of the trajectory is evaluated between times s =t + 1
and s = t + W. These are not significant differences. Modification (ii) is
just a practical consideration to reduce the complexity of the optimization
problem. This is achieved by reducing the time horizon from T to W.
Modification (i) is just a shift in time. We initialize the model with the
state at time ¢ instead of initializing the model with the state at time 0

The significant difference is that we now extract the control action u*(t)
and execute this action in the true dynamical system. The remaining
actions u*(t+1 : t + W) that are also part of the solution of (1) are dis-
carded. We then proceed to advance time to f + 1 and solve the model
based optimization in (1) with initial condition X(t + 1) = x(t + 1).

The MPC controller in Figure 2 is what we call a closed loop control sys-

tem. We observe the state x(t) at time f and use this information to select
the control action u(t) = a*(t). The effect of this control action is to move
the true system into state x(f + 1). The terminology of closing the loop
refers to the fact that we now observe the state x(f + 1) and use this ob-
servation to select the control action u(t +1) = @*(¢+ + 1). This is different
from the open loop control strategy in Figure 1 in which we observe the
initial condition x(0) = x¢ but never again observe the state of the true
system.

Task 1 Leverage the model based optimization code of Lab 8A to run
MPC control on the car simulator. Implementing MPC requires that you
implement the following steps at all times ¢,

(S1) Observe the current state x(t) of the true system.
(S2) Initialize the model system with X(t) = x(t).
(S3) Solve (1). The outcome is a sequence u*(f: t + W).

(S4) Implement control action u(t) = @*(¢) in the true system.

Step (S3) is where we compute the control action u(t) = a*(t). We actu-
ally compute a sequence of control actions u*(t : t + W) but we discard
all entries of the sequence but the first. Steps (S4) implements the control
action in the true system. Steps (S1) and (52) close the control loop by
observing the current state of the true system and feeding it as an input
to the model system.

Plot the reference trajectory xg(t) and the trajectory x(t) generated by
implementation of the MPC controller. Slow down the plot to create a
movie of the controlled car following the reference trajectory.

Evaluate and plot the loss between the generated trajectory and the refer-
ence trajectory. |

The most important conclusion of Task 1 is summarized in Figure 3. The
trajectory generated by the MPC controller follows the reference trajectory
with small loss. This is because closing the loop precludes the accumula-
tion of errors.

https://github.com/Damowerko/ese2000-dynamical-systems

—-—- Expert
15+ — MPC

101

y (m)
«

X (m)

Figure 3. Trajectory Generated by the Model Predictive Controller. The MPC
controller generates a trajectory that follows the reference trajectory with small
error. This is because closing the loop precludes the accumulation of errors.

It is interesting to think of the model part of the controller as a simulation
of the true dynamical system. We use this simulation to evaluate the merit
of different control actions as a way of deciding which control action
to execute. This is a very human way of thinking. We use models to
simulate the effects of different courses of action. We then execute the
action that our simulations deem best. Because simulations and reality
are in the end different, we observe the outcome of our actions and repeat
the simulation to select a new course of action.

2 Imitation Learning

The MPC controller in (1) has a high computation cost as it requires the
solution of an optimization problem in each time step. This is a challenge
because the time between time steps can be short. In the car driving
scenario we are considering, the sampling time is Ty = 50ms.

We can avoid this computation cost using learning. One approach is
to consider the solutions of (1) and train a learning parametrization that
maps the initialization X(t) = x(t) into the control action u(t) = a*(t). We

do that by introducing a learning parametrization 7t(x(t);) and defining
the optimization problem,

0" = mn—lTﬁu 7T 0
= i a*(t), t); . 2
arggl Tt; ((1), 7(x(t))) 2)

In this problem x(f) is the initialization of the MPC controller in (1) and
0*(t) is the optimal control action produced as the corresponding solu-
tion of the optimization problem.

We say that (2) is an imitation problem because we are training a policy
mt(x(t);0) that imitates the actions of the MPC controller. The advantage
of training this imitation policy is that we can train it offline, as we always
do. At execution time we just evaluate the policy 7t(x(t);0*) and execute
the corresponding control action. The computation cost of this evaluation
is smaller than the cost of solving (2).

Notice that in (2) we assume that the states x(¢) are states in the trajectory
of the dynamical system generated by (1). This does not have to be the
case. We can feed any set of input states. For instance, in the circuit
navigation problem we are given a number of expert trajectories. We can
therefore consider the observed states x,(t) and replace (2) with

0% = argmm = Z Zé(7t (x4(t); 0)), (3)

in which @;(#) is the solution of the MPC control optimization problem
in (1) when the initial condition is X(t) = x,(t).

A third possibility is to dither the expert trajectories in (3). That is, for
each state x,(t) we generate D states X,4(t) by adding a random pertur-
bation w4 (t),

Xqa (1) = xg(t) + Woa(t).)

We then reformulate (3) by considering all trajectories, all points in time,
and all dithered states. This leads to the optimization problem,

1

Q T D
0" = argml Z Z Z’ (qd(t))), (5)

in which @ () is reinterpreted as the solution of the MPC control op-
timization problem in (1) when the initial condition is x(t) = Xg4(t).
Adding dithering to the training set improves the robustness of the learned
controller.

The optimization problems in (2), (3), and (5) have the same objective but
take averages over different datasets. Thus, their relative merits depend
on which of the two set of input states is more representative of the states
that are to be expected at execution time. The possible mismatch between
the states that we choose for optimizing 0 and the states that are actually
seen at execution time is a significant challenge when learning to imitate
control policies of dynamical systems.

Task 2 Learn a policy that imitates the MPC controller. You can choose
any parametrization you like, but to keep matters simple we recommend
that you use a linear parameterization,

7 (x(1);6) = O(x(t) — xx (1)) ®)

You can also use any loss you want. If you use a linear parameterization,
a quadratic loss is a good idea.Train the imitation policy by solving (5).
Consider D = 1 dithered state per x,4(t) and use white Gaussian noise

wq(t) with mean E[wg,(t)] = 0 and variance]E[wsd(t)] = 0.09.

Evaluate the control policy 7t(x(t);0*) on the car simulator. Plot the ref-
erence trajectory xg(t) and the trajectory x(t) generated by the imitation
policy. Slow down the plot to create a movie of the controlled car follow-
ing the reference trajectory.

Evaluate and plot the loss between the generated trajectory and the refer-
ence trajectory. [|

3 Model Predictive Control Learning

A second alternative to learn a control policy is direct incorporation of
the parameterization in (1). To do that, we consider a fixed parameter 0
and the policy 7t(x;0) that is generated by this parameter. If we execute

https://github.com/Damowerko/ese2000-dynamical-systems

this policy on the system’s model we incur the cost

t+W
barc(x(0:0) = Y £ (xe(s), %)),

a(t) = (x(s);0).)

As is has been true throughout this chapter, this is not the true cost
incurred by the policy 7r(x;6) in the actual system. To evaluate this
cost we would need to propagate actions through the system function
f(x(t),u(t)). This is impossible because we do not know this function.
The first merit of (7) is that it can be evaluated. Its second merit is that
if model and reality are not that different, a policy that works well in the
model works well in the true system.

The loss function defined in (7) is different from loss functions that we
have encountered before because it evaluates the merit of the policy 77(x; 0)
over a trajectory of W time units. A strange loss function it may be, but
a loss function nonetheless. We can then use it to propose the learning
problem,

T
0* = argminl Y Oapc (x(t);6). 8)
0 T t=1

As in Equation (2) of Section 2 states x(t) in (8) are drawn from the tra-
jectory generated by the MPC controller. As is also the case of Section 2
this does not have to be the case. We can train by minimizing the loss in
(7) over any set of states x(t). In particular, if we use expert trajectories to

define the optimal parameter 6* we replace (8) with
1 & 1¢
6* = argmin —) 7 Y bvpc (x4(t); 0). 9)

4 Q g=1 t=1

Observe that This formulation is akin to (3). Except that instead of search-
ing for a parameter 6 that imitates the MPC policy (), we search for a
parameter 6 that minimizes the MPC cost in (7).

As the reader may be expecting, the use of dithered trajectories [cf. (4)] is

also justified. In such case we would replace (9) by

o1& 1l 1 &
0* = argmin é Z T Z D Z Ivpe (qu(t),‘ 9) (10)
0 =1 L Yo

This formulation is akin to (5) but we seek to minimize the MPC cost
in (7) instead of imitating the MPC policy @ (#). As in imitation learn-
ing, adding dithering to the training set improves the robustness of the
learned controller.

Task 3 Learn a policy that minimizes the MPC loss defined in (7). You
can choose any parametrization you like, but to keep matters simple we
recommend that you use a linear parameterization as in (6). You can train
the imitation policy by solving either (8), (9) or (10). The three choices
have merit. Whichever you use, explain your reasons for choosing it.

Evaluate the control policy 7t(x(t);0*) on the car simulator. Plot the ref-
erence trajectory xg(t) and the trajectory x(t) generated by the learned
policy. Slow down the plot to create a movie of the controlled car follow-
ing the reference trajectory.

Evaluate and plot the loss between the generated trajectory and the refer-
ence trajectory. |

https://github.com/Damowerko/ese2000-dynamical-systems

4 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 Plot of reference trajectory xgr(t) and con-
trolled trajectory x(t).

Plot of loss associated with controlled trajec-
tory x(t) relative to reference trajectory xg(t).

Task 2 Plot of reference trajectory xgr(t) and con-
trolled trajectory x(t).

Plot of loss associated with controlled trajec-
tory x(t) relative to reference trajectory xg(t).

Choice of parameterization and loss.

Choice of training set. Explain choice in one
paragraph.

Task 3 Plot of reference trajectory xg(t) and con-
trolled trajectory x(t).

Plot of loss associated with controlled trajec-
tory x(t) relative to reference trajectory xg(t).

Choice of parameterization.

Choice of training set. Explain choice in one
paragraph.

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 10% of your lab
grade.

10

	Model Predictive Control (MPC)
	Imitation Learning
	Model Predictive Control Learning
	Report

