Lab 5: Time Series and Transformers

Javier Porras-Valenzuela and Alejandro Ribeiro*

June 2, 2025

1 Time Series

We define a time series X as a collection of T + 1 vectors x; € R” indexed
by a time index t = 0,1,...T. There are several tasks that we may want to
perform in a time series, but the prototypical example is the prediction of
the entry xr at time T when given the history of the series between times
Oand T —1,

X7 = X071 = [X0,X1,--.,X71 . 1)

This task is illustrated in Figure 1 for T = 10. The time series is observed
between times t = 0 and t = T —1 = 9. The value at time T = 10 is
unobserved. Our goal is to predict it.

This is a goal that we can formulate as a machine learning task. Given
the history of the time series between times 0 and T — 1, we introduce
a learning parameterization H to produce estimates of the time series at
time T,

xr = (Xr, H). )

These estimates can be compared to the true value of the time series xr
to formulate a training cost that we then optimize to find the optimal set
of parameters. That is, we go through the usual steps of: (i) Acquiring
data for several time series. This yields a set of U histories X;, and cor-
responding time T values x,r. (ii) Introducing a loss function ¢(Xr, xT)

“In alphabetical order.



X0 X1 X2 X3 X4 X5 X6 X7 Xs X9 X10

Figure 1. Time Series Prediction. A time series is a collection of T + 1 vectors
x; € R" indexed by a time index t. The prototypical task in time series is the
prediction of the entry at time T when given the history of the series between
times t = 0 and t = T — 1. In the figure, T = 10 and we want to predict the
unobserved value of x7 = xjp based on the observed values of xp.7_1 = X(.9.

measuring the fit between the time series value x7 and its prediction Xr.
(iii) Formulating the empirical risk minimization (ERM) problem,

) 1 u-1
H* = argmin — ) E(CI)(XuT,H),qu). 3)
H u u=0
In (3), the index u denotes several different time series. This is not quite
how time series work. In reality, we are given a single time series that
extends for T + U units of time and the “different” time series are actually
different windows of the same time series,

Xur = Xyt 7-1 = [xuz Xy41s+ - s Xu4+T-1 ]/ XuT = Xy4-T- “4)

Thus, out of a single time series we extract a number of training samples
that consider time u as the starting point of a new sequence of length T
out of which we want to predict the value of the sequence at time u + T.
Our first task is to construct the dataset in (4) when given a time series.

Task 1 In this lab we work with weather data. We are given a time series
with T 4+ U = 52,696 entries each of which has various descriptors of the
weather at different times of different days. The entries in the time series
are twelve weather indicators such as humidity, atmospheric pressure,
and temperature.

Load the data from the lab’s page and plot component “T (degC)” of the
time series as a function of time. This is the average temperature during
each time interval.



Xt—T Xt—1 Xt

Figure 2. Time Series Prediction. It is more common to define time series as sets
of vectors x; € IR” that extend to infinity. In this context the prediction problem
illustrated in Figure 1 morphs into the problem of estimating x; given a window
of T previous values X; = x;_1.4_1. They are mathematically equivalent problems.

Separate this time series into two parts. The first part contains 70% of the
values and the second part contains the remaining 30%. Use these two
time series to extract U = 36,787 samples of the form in (4) for a training
set and to extract U = 15,709 samples of the form in (4) for a test set. In
both cases, use T = 100.

1.1 A More Precise Definition of Time Series

We begun Section 1 describing time series as a collection of T + 1 vectors
x; € R". A more common definition of a time series is that of a set of vec-
tors x; € R" that extends from time ¢ = 0 to infinity. At any point in time
t our goal is to predict the value of x; given the whole process’s history
X0:t—1. In practice, values in the distant past are considered irrelevant for
the estimation of x;. We therefore introduce a window of length T and
consider the history of the time series starting at time ¢ — T. Formally, we
define the windowed history

Xt = X1 = [ Xem T Xem T2, Xe—1 |, @)
and consider a learning parameterization that maps X; to predictions
X =®(Xe, H). (6)

This is an equivalent description of the history and parameterization in
(1) and (2). It is just that instead of starting at time ¢ = 0 to predict at time
T as in (1) and (2) we start at arbitrary time ¢ to predict at time t 4 T.



: Q Ox; Kxy K .
L] _ ]
Btu

- H _
] | Il

Figure 3. Attention. For vectors x; and x,, we compute attention coefficient By, to
measure their similarity. To compute these similarities the vector x; is multiplied
by the query matrix Q and the vector x; is multiplied by the key matrix K. The
attention coefficient By, is the inner products between queries Qx; and keys Kx,.

This more accurate description of a time series is important during exe-
cution. The trained model ®(X, H*) is executed on a rolling basis. At any
time t we make predictions by executing the model ®(X;, #*) with the
history window X; as defined in (5). After observing x; — at which point
the problem of predicting x; becomes moot — we advance time to t + 1,
update the history window and execute the model ®(X;;1, H*) to make
a prediction of the value of the time series at time ¢t 4 1.

Henceforth, we work with the definition of a time series as a sequence
of T vectors X = xg.r—1 with the goal of predicting xr. There are less
indexes involved and the notation is less cumbersome. But we keep in
mind that out trained models are to be executed on a rolling basis on an
indefinite time series.

2 Attention Layers

Attention layers create representations of the entries x; of a time series
X = [xo,...,x7]| that depend on context. This is done by constructing
vectors y; that are linear combinations of all of the entries of the time
series weighted by importance coefficients. l.e., for a certain matrix M



Xt X

Ox; KX

b;

Figure 4. Attention vectors. For a given vector x;, we compute a vector of attention
coefficients b;. These coefficients measure the similarity between x; and all other
vectors in the time series. To compute these similarities the vector x; is multiplied
by the query matrix Q and the series X is multiplied by the key matrix K. The
attention vector by is the inner product between the query Qx; and the keys Kx,.

and similarity function d(-, -), we compute the vector

T
yr = Z d(xt, Xy )Mxy,. )
u=0
The collection of vectors y; forms another time series Y = [yo,...,yT1].

The construction of the time series Y is such that its entries y; depend on
all other entries of the time series. For this reason we call it a contextual
representation. The purpose of the importance coefficients d(x;, x) is for
the representation y; to be most affected by the time series vectors x,, that
are deemed most relevant to x;.

The importance coefficients d(x, x,,) are called attention coefficients.



2.1 Attention Coefficients

To accomplish this we rely on the attention coefficients

By = <th1Kxu> = (th)T(Kxu)- (8)

Attention is just a way of measuring the similarity between the compo-
nents x; and x, of the time series. Indeed, if we make Q = K = I the
attention coefficient reduces to the inner product between the time series’s
components, By, = (x¢,Xy). This inner product is a standard measure of
similarity between vectors.

The incorporation of Q and K in (8) introduces learnable coefficients that
may yield more relevant measures of similarity. The matrices Q and K
have n columns — which is the number of entries of each of the time series
vectors x; — and m rows. In general, m < n because we know that inner
products are more meaningful in low dimensional spaces.

The coefficients B, can be arranged into row vectors b; that include all of
the attention coefficients associated with time ¢t. It follows from (8) and
the definition of the time series matrix X = [xo, ..., xr] that this vector of
attention coefficients can be computed as

b; = (Qx)T(KX). )

The computation of the attention vector by is represented in Figure 4. We
begin with the time series represented in its matrix form X and isolate a
specific time index t. This is the vector x; in Figure 4. To compute atten-
tion coefficients we multiply x; by the query matrix Q. This multiplication
yields the query vectors Qx; for this particular component of the time
series. In parallel, each of the vectors x, of the time series is multiplied
by the key matrix K. This results in the calculation of the key vectors Kx,
which are the columns of the key matrix KX. Although not required, the
number of rows of the query and key vectors are (much) smaller than the
number of rows of the time series. The attention coefficients in (8) are the
result of computing the inner product between the query vector and the
key matrix.

The attention coefficients in (8) can be further grouped into an attention
matrix B. Operating from the definition of the attention vectors in (9) we
can see that this matrix is given by

B = (QX)T(KX). (10)



This computation is illustrated in Figure 5. The time series matrix X is
multiplied by the query matrix Q and the key matrix K. These multipli-
cations result in the computation of the queries QX and the keys KX. The
attention matrix B is the outer product (QX)T(KX) between queries and
keys.

Notice that there are a large number of attention coefficients but they are
generated by a relatively small number of parameters. Indeed, there are
at total of (T + 1)? attention coefficients when we operate with a time
series with T 4 1 vectors. However, the query and key matrices have
m X n coefficients.

As is the case with convolutions in time, graphs, and images, the matrix
expression in (10) is the one that we use for implementations. The scalar
and vector expressions in (8) and (9) are valuable to understand attention
but not used in implementations.

Task 2 Implement a Pytorch module for the similarity operation in (10).
The query and key matrices are attributes of this class. The forward
method should compute the attention matrix B.

2.2 Nonlinear Attention

The similarity coefficients in (8) are what we call a linear attention mech-
anism. Nonlinear attention mechanisms post process linear attention co-
efficients with a nonlinear function.

The most common choice of nonlinearity is a function we call a softmax.
For a given vector b € RT*! the softmax is the vector, a = sm(b) with
components,

___exp(by) _ _exp(b)
Y epbs Y T Tepwy 1Y
where in the second equality we define the vector of exponentials exp(b) :=
[exp(bo); . ..;exp(br) and the vector of all ones 1 := [1;...;1]. As per
(11), the softmax entry a, is the ratio between the exponential exp(by) of
Component u of the vector b normalized to the sum of the exponentials
exp(b,/) of all components of b. We point out that the definition is simi-



Figure 5. Attention Matrix. The time series matrix X is multiplied by the query
matrix Q and the key matrix K. These multiplications result in the computation
of the queries QX and the keys KX. The attention matrix B is the outer product
(QX)T(KX) between queries and keys. There are a large number of attention
coefficients but they are generated by a small number of parameters.



lar but not identical to the definition of the softmax function we used to
introduce the cross entropy loss In Lab 2C.

With this definition we can now define softmax similarity coefficients as
the application of the softmax function in (11) to the linear similarity
vector in (9).

exp (((Qx)T(KX) )

1T exp ( (Qx¢)T(KX) ) '
(12)

Observe that the definition of the softmax in (11) is such that the sum of
the entries of the softmax vector is normalized to, 1Tsm(a) = 1. As a
particular case, the sum of the similarity coefficients a; in (12) is 1Ta, =
1. We can then think of the softmax similarity coefficients in (12) as a
nonlinear normalization of the attention coefficients in (9).

This observation is important because it makes it plain that (12) is similar
to a pointwise nonlinearity. Indeed, if we use Ay, to denote the entries of
a;, it follows from the definitions in (8), (9) and (12) that

__ exp(Bu)
25/111 exp(Bu)

Thus, the similarity coefficient Ay, is obtained by applying an exponential
pointwise nonlinearity to the linear similarity coefficient By, followed by a
normalization. The purpose of the exponential nonlinearity is to magnify
the difference between different similarity coefficients.

Atu (13)

Similarly to (10), we can group all attention coefficients into a matrix

A =sm((Q)T(KX) ), (14)

where the softmax function implements normalizing along the rows of
(QX)T(KX). Le., the rows of the similarity matrix A are the vectors a;
defined in (12).

Task 3 Implement a Pytorch module for the similarity operation in (14).
The query and key matrices are attributes of this class. The forward
method should compute the attention matrix A.



]HHH

A"

VX Zy

a [T NN BN e 7 A ([ .

Figure 6. Contextual Representations of Reduced Dimension. Contextual repre-
sentations are created by multiplying the time series matrix by a matrix V with m
rows and 7 columns. Since m < n, this creates a representation VX of the time
series in a lower dimensional space. Each of the vectors in VX is multiplied by
the attention coefficient Ay, [cf. (12)-(14)]. The sum of the result over all u is the
contextual representation z; of dimension m.

2.3 Contextual Representations

The similarity coefficients in (12)-(14) are used to create a contextual rep-
resentation of x;,

T
zy = Z (qu)Atu (15)
u=0

This contextual representation is a linear combination of all the vectors in
the time series multiplied by a matrix V and scaled by the similarity coef-
ficients Ay,. The matrix V € R™*" is a projection in a lower dimensional
space. The dimensions of V are the same as the dimensions of Q and K.

It is ready to see that the the expression in (15) is equivalent to
z; = VXa} . (16)

This operation is explained in Figure 6. The time series X is multiplied

10



Figure 7. Contextual Representations of Reduced Dimension. Operations in Fig-
ure 6 shown in matrix form. The product VX represents the time series in a space
of lower dimension m < n. Multiplication on the right with the attention matrix
AT produces the contextual representation of the time series, Z € R™.

11



by the value matrix V. This produces an alternative representation of
the time series given by the product VX. This representation is of lower
dimensionality. Instead of having vectors x, € R" associated with each
point in time u we have vectors Vx,, € R™. We choose m < n. The low
dimensional contextual representation z; is obtained by weighting each
vector Vx, by the attention coefficient Ay, and summing over all times
u. Equivalently, we obtain z; as the product VXa/ shown in (16). We say
that this representation is contextual because z; depends on vectors x;
that have deemed similar to x; by the attention coefficient Ay,.

The operation in (16) can also be represented in matrix form. The matrix
Z with columns z; is given by

Z = VXAT (17)

This operation is represented in Figure 7. The top part of Figure 7 is the
same as the top part of Figure 6. We are constructing a lower dimensional
representation VX of the time series. We then produce the contextual
representation Z by multiplying VX with the attention matrix transpose
AT,

The representations in (17) are of dimension m < n. We complete an
attention layer with a dimensional recovery step. This is done by multi-
plication with the transpose of a matrix W € R"*". We can write this
operation in terms of individual contextual vectors z;,

yr = Wiz, = WTVXatT. (18)
or in terms of the matrix Z with all of the contextual vectors
Y = Wiz = wivxaT (19)

The vectors y; are contextual representations of the time series that have
same dimensionality as the components of the time series. The operations
in (18) and (19) are illustrated in Figures 8 and 9.

The representation Y is the output of an attention layer.

2.4 Softmax Attention Layers

As it follows from the discussions in Sections 2.2 and 2.3 a softmax atten-
tion layer has two distinct operations. The first operation is the computa-

12



y:

Zt W

Figure 8. Contextual Representations of Original Dimension. We recover repre-
sentations with the same initial dimension by multiplying the representation of
reduced dimensionality by the transposed matrix WT. The vector y: is the output
of the attention layer. It is a linear combination of all the vectors in the time series
weighted by their relevance to time t entry [cf. (18)].

tion of the softmax attention coefficients,
A= sm( (0X)T(KX) ) (20)

This is Equation (14) repeated here for reference. The second operation is
the computation of the contextual representation,

T
Y = WIvXAT = wWTvx [sm((QX)T(KX))} .@D
This is Equation (19) repeated here for reference.

The parameters of the attention layer are the matrices Q, K, V and W.
All of these matrices have m rows and n columns with m < n. Having
intermediate representations of smaller dimension is important.

The expressions in (14) and (21) are what you should use to implement
and analyze attention layers. However, it is sometimes instructive to keep
in mind the definition of the attention vectors

a; = sm( (th)T(Kxu) ), (22)

and the expanded expression for the computation of the contextual rep-
resentation :
yi = WT Y ApVx,. (23)
u=0

13



w

[ H H:
'8

Y=WTzZ

Figure 9. Contextual Representations of Original Dimension. Operations in Fig-
ure 8 shown in matrix form. The reduced dimensionality contextual representa-
tion Z is multiplied by the transposed matrix WT [cf. (19)]. This is the output of
the attention layer.

Equation (22) is a repetition of (12) and equation (23) is a combination of
(18) and (15). Notice that the expression in (23) has the same form of the
conceptual expression in (7) with d(x¢, x,) = Ay and M = WTV,

Task 4 Code a Pytorch module that implements an attention layer. The
matrices Q, K, V and W are parameters of this module. The forward
method of this module takes a time series X as an input and produces the
time series Y as an output. The module receives m and n as initialization
parameters.

It is common to postprocess the contextual representation further, but to
do so without further mixing of different time components. The simplest
we can do is add a pointwise nonlinearity to (21) so that the output is

Y, = a(Y) - a(wTVXAT). (24)

It is also not uncommon to postprocess each y; with a fully connected
neural network (FCNN). This is not unwise because the dimensionality
of y; is not too large and we will use the same FCNN for all times ¢. We
will not do this here.



Task 5 Modify the module of Task 4 to include a pointwise nonlinear
operation. You can choose your favorite nonlinearity here, but we suggest
you implement a relu.

3 Transformers

A transformer is a layered architecture where each layer is an attention
layer. Formally, this is a composition of operations defined by the recur-
sion

Ay = Sm((QzXefl)T(szeA)), (25)
Y, = W v, X, AT, (26)
Xg = (T(Yf). (27)

This recursion is initialed with X¢o = X and is repeated L times, where
L is the number of layers of the transformer. This is analogous to the
composition of layers in convolutional and graph neural networks.

For future reference, define the tensor A = [Qy, Ky, V,;, W] grouping the
query, key, value, and dimension recovery matrices of all layers. With this
definition we write the output of a transformer as

DX, A) = Xp (28)

In (28), X is the time series that we input to the transformer and A is
the trainable parameter. The output ®(X, .A) is another time series with
the same number of time components T + 1 and vectors with the same
dimension n. The vectors y; are representations of time ¢t that depend on
the context of the whole time series.

Task 6 Code a Pytorch module to implement a Transformer as specified
by (25)-(27). This implementation can leverage the implementation of the
attention layer in Task 5.

15



4 Time Series Prediction

We use a transformer to predict the next entry of a time series; Section 1.
To do so observe that the output of the transformer Y is an n x (T + 1)
matrix representing the time series X which is also an n x (T + 1) matrix.
This is mismatched to a problem in which the input is a time series with
T components [Xo, ..., X7—_1] and the output is a prediction Xt of the value
at time T. To sort out this mismatch consider the average x = X1/T of
the time series values and define the input of the transformer as the time
series

X = [x, x} (29)

In the time series X; we append the mean x to the given time series X;.
The idea is that X is a naive prediction of the time series entry for time
T+1.

We can now use a transformer to refine this estimate. We do that by
reading the transformer output at time T + 1 and declaring it to be our
estimate of the weather data,

K7 = [@(X,A)}T. (30)

An alternative approach is to process the time series X without append-
ing the naive estimate X. This gives as an output a time series with T
components. In this case we declare that the estimate Xt is the average of
the outputs of the transformer for all times,

&7 = [@(x, A)]l. (31)

Notice that (29)-(30) and (31) are similar approaches. In (29)-(30) we com-
pute an average before running the transformer and in (31) we compute
an average after running the transformer.

Task 7 Use the data in Task 1 to train a transformer for weather predic-
tion. You can choose either of the approaches in (29)-(30) or (31). The
parameters of the transformer are your choice. We suggest that you use
L = 3 layers and m = 3 for your intermediate representations. Use a
mean squared loss and evaluate train and test performance.

16



5 Multihead Attention

As we did with CNNs and GNNs we also incorporate multiple features.
Features in transformers are called heads. Now we have H heads, each
with its own query, key, value, and dimension recovery matrices:

Al = sm( QX ) (KX, 1) ), (32)

Y = WIvix, Al (33)
H

X, = x“+a< YZ). (34)
h=1

A (minor) difference between multihead transformers and neural net-
works with multiple features is that the outputs of attention layers always
have a single feature. The multiple features YZ generated by different
heads are added at the output of each layer to produce the layer’s output
Xy.

In (34), we introduce another change. We add X;_; to the output of the
pointwise nonlinearity. This is called a residual connection. It is just
a trick that prevents gradients from becoming too small when stacking
multiple attention layers during training.

Task 8 Code a Pytorch module to implement a multihead transformer as
specified by (32)-(34). This implementation can leverage the implementa-
tion of the attention layer in Task 5.

Task 9 Use the data in Task 1 to train a multihead transformer for weather
prediction. You can choose either of the approaches in (29)-(30) or (31).
The parameters of the transformer are your choice. We suggest that you
use L = 3 layers, m = 3 for your intermediate representations, and H = 4
for the number of heads. Use a mean squared loss and evaluate train and
test performance.

17



6 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 Do not report

Task 2 Do not report

Task 3 Do not report

Task 4 Do not report

Task 5 Do not report

Task 6 Do not report

Task 7 Train MSE and Test MSE
Task 8 Do not report

Task 9 Train MSE and Test MSE

Number of images in the train and test set. Training loss Test loss

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 8 points total.

18



	Time Series
	A More Precise Definition of Time Series

	Attention Layers
	Attention Coefficients
	Nonlinear Attention
	Contextual Representations
	Softmax Attention Layers

	Transformers
	Time Series Prediction
	Multihead Attention
	Report

